
International Journal of Computer Vision
https://doi.org/10.1007/s11263-019-01250-9

DeepIM: Deep Iterative Matching for 6D Pose Estimation

Yi Li1,2 · Gu Wang2 · Xiangyang Ji2 · Yu Xiang3 · Dieter Fox1,3

Received: 9 February 2019 / Accepted: 19 September 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Estimating 6D poses of objects from images is an important problem in various applications such as robot manipulation
and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of
an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for
6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by
matching the rendered image against the observed image. The network is trained to predict a relative pose transformation
using a disentangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two
commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over state-of-
the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.

Keywords 3D object recognition · 6D object pose estimation · Object tracking

1 Introduction

Localizing objects in 3D from images is important in many
real world applications. For instance, in a robot manipulation
task, the ability to recognize the 6D pose of objects, i.e., 3D
location and 3D orientation of objects, provides useful infor-
mation for grasp and motion planning. In a virtual reality
application, 6D object pose estimation enables virtual inter-
actions between human and objects. While several recent
techniques have used depth cameras for object pose estima-
tion, such cameras have limitationswith respect to frame rate,

Communicated by Cristian Sminchisescu.

B Yi Li
yili.matrix@gmail.com

Gu Wang
wangg16@mails.tsinghua.edu.cn

Xiangyang Ji
xyji@tsinghua.edu.cn

Yu Xiang
yux@nvidia.com

Dieter Fox
dieterf@nvidia.com

1 University of Washington, Seattle, USA

2 Tsinghua University and BNRist, Beijing, China

3 NVIDIA, Seattle, WA, USA

field of view, resolution, and depth range, making it very dif-
ficult to detect small, thin, transparent, or fastmoving objects.
Unfortunately, RGB-only 6D object pose estimation is still
a challenging problem, since the appearance of objects in
the images changes according to a number of factors, such
as lighting, pose variations, and occlusions between objects.
Furthermore, a robust 6D pose estimation method needs to
handle both textured and textureless objects.

Traditionally, the 6D pose estimation problem has been
tackled by matching local features extracted from an image
to features in a 3D model of the object (Lowe 1999; Roth-
ganger et al. 2006; Collet et al. 2011). By using the 2D–3D
correspondences, the 6D pose of the object can be recov-
ered. Unfortunately, such methods cannot handle textureless
objects well since only few local features can be extracted
for them. To handle textureless objects, two classes of
approaches were proposed in the literature. Methods in the
first class learn to estimate the 3D model coordinates of pix-
els or keypoints of the object in the input image. In this way,
the 2D–3D correspondences are established for 6D pose esti-
mation (Brachmann et al. 2014; Rad and Lepetit 2017; Tekin
et al. 2017). Methods in the second class convert the 6D pose
estimation problem into a pose classification problem by dis-
cretizing the pose space (Hinterstoisser et al. 2012b) or into
a pose regression problem (Xiang et al. 2018). These meth-
ods can deal with textureless objects, but they are not able to
achieve highly accurate pose estimation, since small errors

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01250-9&domain=pdf

International Journal of Computer Vision

pose(0)

Δpose(0)

Network

Observed image

3D model

Renderer

Rendered image

pose(1)

Network

3D model

Renderer

Rendered image

×
Δpose(1)

×
…

Fig. 1 We propose DeepIM, a deep iterative matching network for 6D
object pose estimation. The network is trained to predict a relative SE(3)
transformation that can be applied to an initial pose estimation for itera-
tive pose refinement. Given a 6Dpose estimation of an object, which can
be the output of other pose estimation methods like PoseCNN (Xiang
et al. 2018) (pose(0) in the figure) or the refined pose from previous
iteration (pose(1) in the figure), along with the 3D model of the object,

we generate the rendered image showing the appearance of the tar-
get object under this rough pose estimation. With the image pairs of
rendered image and observed image, the network predicts a relative
transformation (1pose in the figure) which can be applied to refine the
input pose. The refined pose can be used as the input pose of next iter-
ation and therefore the process can be repeated until the refined pose
converges or the number of iterations reaches a pre-determined number

in the classification or regression stage directly lead to pose
mismatches. A common way to improve the pose accuracy is
pose refinement: Given an initial pose estimation, a synthetic
RGB image can be rendered and used to match against the
target input image. Then a new pose is computed to increase
the matching score. Existing methods for pose refinement
use either hand-crafted image features (Tjaden et al. 2017)
or matching score functions (Rad and Lepetit 2017).

In this work, we propose DeepIM, a new refinement tech-
nique based on a deep neural network for iterative 6D pose
matching. Given an initial 6D pose estimation of an object
in a test image, DeepIM predicts a relative SE(3) transfor-
mation that matches a rendered view of the object against
the observed image, or in other words, it predicts the relative
rotation and translation that can refine the initial 6D pose esti-
mation. By iteratively re-rendering the object based on the
improved pose estimates, the two input images to the net-
work become more and more similar, thereby enabling the
network to generate more and more accurate pose estimates.
Figure 1 illustrates the iterative matching procedure of our
network for pose refinement.

This work makes the following main contributions. (1)
We introduce a deep network for iterative, image-based pose
refinement that does not require any hand-crafted image
features and automatically learns an internal refinement
mechanism. (2) We propose a disentangled representa-
tion of the SE(3) transformation between object poses to
achieve accurate pose estimates. This representation also
enables our approach to refine pose estimates of unseen

objects. (3)We have conducted extensive experiments on the
LINEMOD (Hinterstoisser et al. 2012b) and the Occlusion
LINEMOD (Brachmann et al. 2014) datasets to evaluate the
accuracy and various properties of DeepIM. These experi-
ments show that our approach achieves large improvements
over state-of-the-art RGB-only methods on both datasets.
Furthermore, initial experiments demonstrate that DeepIM
is able to accurately match poses for textureless objects [T-
LESS (Hodan et al. 2017)] and for unseen objects (Wu et al.
2015). The rest of the paper is organized as follows. After
reviewing related works in Sect. 2, we describe our approach
for pose matching in Sect. 3. Experiments are presented in
Sect. 4, and Sect. 5 concludes the paper.

2 RelatedWork

We review representative works on 6D pose estimation in the
literature.

2.1 RGB Based 6D Pose Estimation

Traditionally, object pose estimation using RGB images is
tackled by matching local features (Lowe 1999; Rothganger
et al. 2006;Collet et al. 2011). In this paradigm, a 3Dmodel of
an object is first reconstructed and local features of the object
are attached to the 3D model. Keypoint-based features such
as SIFT (Lowe 1999) or SURF (Bay et al. 2008) are widely
used. Given an input image, local features extracted from

123

International Journal of Computer Vision

the image are matched against features on the 3D model.
By filtering out incorrect matches using robust estimation
techniques such as RANSAC (Nistér 2005), the 6D pose of
the object can be recovered using the 2D-to-3D correspon-
dences between the local features. Local-feature matching
basedmethods can handle partial occlusions between objects
as long as the features on the visual part of the object are suf-
ficient to determine the 6D pose. However, these methods
cannot handle textureless objects well, since rich texture on
the object is required in order to detect these features robustly.

In contrast, template-matching based methods are capa-
ble of handling textureless objects (Jurie and Dhome 2001;
Liu et al. 2010; Gu and Ren 2010; Hinterstoisser et al.
2012a). In this paradigm, templates of an object are first
constructed, where examples of templates are renderings of
the object from the 3D object model or Histogram of Ori-
ented Gradients (HOG) (Dalal and Triggs 2005) templates
from different viewpoints. Then these templates are matched
against the input image to determine the location and orienta-
tion of the target object in the input image. The drawback of
template-matching based methods is that they are not robust
to occlusions betweenobjects.When the target object is heav-
ily occluded, the matching score is usually low which may
result in incorrect pose estimation.

Recent approaches apply machine learning, especially
deep learning, for 6D pose estimation using RGB images
(Brachmann et al. 2014; Krull et al. 2015). Learning tech-
niques are employed to detect object keypoints for matching
or learn better feature representations for pose estimation.
The state-of-the-art methods (Rad and Lepetit 2017; Kehl
et al. 2017; Tekin et al. 2017; Xiang et al. 2018; Tremblay
et al. 2018) augment deep learning based object detection or
segmentation methods (Girshick 2015; Long et al. 2015; Liu
et al. 2016; Redmon et al. 2016) for 6D pose estimation. For
example, Rad and Lepetit (2017), Tjaden et al. (2017) and
Tremblay et al. (2018) utilize deep neural networks to detect
keypoints on the objects, and then compute the 6D pose by
solving the PnP problem. Kehl et al. (2017) and Xiang et al.
(2018) employ deep neural networks to detect objects in the
input image, and then classify or regress the detected object
to its pose. A recent work Sundermeyer et al. (2018) uses an
autoencoder to map the object in the image to a vector and
search for the most similar vector in a pre-generated code-
book for pose estimation. Overall, learning-based methods
achieve better performance than traditional methods, largely
due to the ability of learning a powerful feature representa-
tion for pose estimation.

2.2 Depth Based 6D Pose Estimation

From another point of view, the 6D pose estimation problem
can be tackled using depth images. Given a 3D model of an
object and an input depth image, the problem is formulated as

aligning the two point clouds computed from the 3D model
and the depth image, respectively, which is also known as the
geometric registration problem. Roughly speaking, geomet-
ric registration methods can be classified as local refinement
methods and global registration methods. The most well-
known local refinement algorithm is the Iterative Closest
Point (ICP) algorithm (Besl andMcKay1992) and its variants
(Rusinkiewicz and Levoy 2001; Salvi et al. 2007; Tam et al.
2013). Given an initial pose estimation, the ICP algorithm
iterates between finding the correspondences between points
and refining the pose estimation using the new correspon-
dences. In general, local refinement algorithms are sensitive
to the initial pose. If the initial pose estimation is not close
enough, the algorithm may converge to a local mimimum.

Global registration methods (Mellado et al. 2014; Theiler
et al. 2015; Zhou et al. 2016; Yang et al. 2016) solve a
more challenging problem by not assuming an initial pose
estimate. A common strategy is to utilize iterative model fit-
ting frameworks such as RANSAC. In each iteration, a set
of point correspondences are sampled, and an alignment is
computed and evaluated using the sampled correspondences.
The limitation of most global registration methods is that
they are computationally expensive. Also, the registration
quality heavily depends on the quality of the 3D model and
the scanned point cloud. In order to improve the registration
performance, features on point clouds are also introduced
for matching. These include point pairs (Mian et al. 2006;
Hinterstoisser et al. 2016), spin-images (Johnson and Hebert
1999), and point-pair histograms (Rusu et al. 2009; Tombari
et al. 2010). Similar to the trend in image-based matching,
recent approaches Wang et al. (2019) propose to learn point
features for registration, such as applying deep neural net-
works to point clouds (Qi et al. 2017).

2.3 RGB-D Based 6D Pose Estimation

When both RGB images and depth images are available, they
can be combined to improve 6D pose estimation. A common
strategy is to estimate an initial pose of an object based on
the color image, and then refine the pose using depth-based
local refinement algorithms such as ICP (Hinterstoisser et al.
2012b; Michel et al. 2017; Zeng et al. 2017).

For example, Hinterstoisser et al. (2012b) renders the 3D
model of an object into templates of color images, and then
matches these templates against the input image to estimate
an initial pose. The final pose estimation is obtained via
ICP refinement on the initial pose. Brachmann et al. (2014),
Brachmann et al. (2016) and Michel et al. (2017) regress
each pixel on the object in the input image to the 3D coor-
dinate of that pixel on the 3D model. When depth images
are available, the 3D coordinate regression establishes corre-
spondences between 3D scene points and 3D model points,
from which the 6D pose can be computed by solving a least-

123

International Journal of Computer Vision

Fig. 2 DeepIM operates on a zoomed in, up-sampled input image, the
rendered image, and the two object masks (480× 640 in our case after
zooming in). More specifically, we enlarge the bounding box of the
object in the rendered image, crop the corresponding patch using the

enlarged bounding box in both image pairs and mask pairs and then
up-sample them to high resolution. Notice that the aspect ratio is kept
during this process to avoid image distortion. See Sect. 3.1 for more
details

squares problem. PoseCNN (Xiang et al. 2018) introduces
an end-to-end neural network for 6D object pose estimation
using RGB images only. Given an initial pose from the net-
work, a customized ICP method is applied to refine the pose.
A recent workWang et al. (2019) introduces a neural network
that combines RGB images and depth images for 6D pose
estimation, and an iterative pose refinement network using
point clouds as input.

2.4 RGBVersus RGB-D

Overall, the performance of RGB-based methods is still not
comparable to that of the RGB-D based methods.We believe
that this performance gap is largely due to the lack of an
effective pose refinement procedure using RGB images only.
Manhardt et al. (2018) which is published at the same time
as ours introduces a method to refine 6D object poses with
only RGB images, but there is still a large performance gap
between Manhardt et al. (2018) and depth-based methods.
Our work is complementary to existing 6D pose estimation
methods by providing a novel iterative pose matching net-
work for pose refinement on RGB images.

The approaches most related to ours are the object pose
refinement network in Rad and Lepetit (2017) and the itera-
tive hand pose estimation approaches in Carreira et al. (2016)
and Oberweger et al. (2015). Compared to these techniques,
our network is designed to directly regress to relative SE(3)
transformations. We are able to do this due to our disen-
tangled representation of rotation and translation and the
reference frame we used for rotation, which also allows our
approach to match unseen objects. As shown in Mousavian
et al. (2017), the choice of reference frame is important to
achieve good pose estimation results. Ourwork is also related
to recent visual servoing methods based on deep neural net-
works (Saxena et al. 2017; Costante and Ciarfuglia 2018)
that estimate the relative camera pose between two image

frames, while we focus on 6D pose refinement of objects.
Recent works Garon et al. (2016) and Garon and Lalonde
(2017) that focus on tracking could predict the transforma-
tion of the object pose between previous frame and current
frame and have the potential to be used for pose refinement.

3 DeepIM Framework

In this section, we describe our deep iterative matching net-
work for 6Dpose estimation.Given anobserved image and an
initial pose estimate of an object in the image, we design the
network todirectly output a relativeSE(3) transformation that
can be applied to the initial pose to improve the estimate. We
first present our strategy of zooming in the observed image
and the rendered image that are used as inputs of the network.
Then we describe our network architecture for pose match-
ing. After that, we introduce a disentangled representation
of the relative SE(3) transformation and a new loss function
for pose regression. Finally, we describe our procedure for
training and testing the network.

3.1 High-Resolution Zoom In

It can be difficult to extract useful features for matching if
objects in the input image are very small. To obtain enough
details for posematching,we zoom in the observed image and
the rendered image before feeding them into the network, as
shown in Fig. 2. Specifically, in the i-th stage of the iterative
matching, given a 6D pose estimate p(i−1) from the previous
step, we render a synthetic image using the 3D object model
viewed according to p(i−1).

We additionally generate one foreground mask for the
observed image and rendered image. The four images are
cropped using an enlarged bounding box according to the
observed mask and the rendered mask, where we make sure

123

International Journal of Computer Vision

Fig. 3 DeepIM uses a FlowNetSimple backbone to predict a relative
SE(3) transformation to match the observed and rendered image of an
object. Taking observed image and rendered image and their corre-
sponding masks as input, the convolution layers output a feature map

which then be forwarded through several fully connected layers to pre-
dict the translation and rotation. The same feature map, combined with
feature maps in the previous layers, will also be used to predict flow
and foreground mask during training

the enlarged bounding box has the same aspect ratio as the
input image and is centered at the 2D projection of the origin
of the 3D object model.

In more detail, given the rendered mask mrend and the
observed maskmobs, the cropping patch is computed as

xdist = max(|lobs − xc|, |lrend − xc|,
|robs − xc|, |rrend − xc|),

ydist = max(|uobs − yc|, |urend − yc|,
|dobs − yc|, |drend − yc|),

width = max(xdist, ydist · r) · 2λ,

height = max(xdist/r , ydist) · 2λ,

(1)

where u∗, d∗, l∗, r∗ denotes the upper, lower, left, right bound
of foreground mask of observed or rendered images, xc, yc
represent the 2D projection of the center of the object in
imgrend, r represent the aspect ratio of the origin image
(width/height), λ denotes the expand ratio, which is fixed
to 1.4 in the experiment in order to make the expanded patch
is roughly twice than the nested one. Then this patch is bilin-
early sampled to the size of the original image, which is
480 × 640 in this paper. By doing so, not only the object is
zoomed in without being distorted, but also the network is
provided with the information about where the center of the
object lies.

3.2 Network Structure

Figure 3 illustrates the network architecture of DeepIM. The
observed image, the rendered image, and the two masks, are
concatenated into an eight-channel tensor input to the net-
work (3 channels for observed/rendered image, 1 channel
for eachmask).We use the FlowNetSimple architecture from
Dosovitskiy et al. (2015) as the backbone network, which is
trained to predict optical flow between two images. We tried
using the VGG16 image classification network (Simonyan
andZisserman 2014) as the backbone network, but the results
were very poor, confirming the intuition that a representation
related to optical flow is very useful for posematching (Wang
et al. 2017).

The pose estimation branch takes the feature map after 10
convolution layers from FlowNetSimple as input. It contains
two fully-connected layers each with dimension 256, fol-
lowed by two additional fully-connected layers for predicting
the quaternion of the 3D rotation and the 3D translation,
respectively.

During training,we also add two auxiliary branches to reg-
ularize the feature representation of the network and increase
training stability and performance, see Sect. 4.4 and Table 1
for more details. One branch is trained for predicting optical
flow between the rendered image and the observed image,

123

International Journal of Computer Vision

Table 1 Ablation study on the role of mask prediction and flow predic-
tion branch

Methods 5 cm 5◦ 6D Pose Proj. 2D

Mask Flow

� � 93.9±0.7 82.5±1.7 98.2±0.3

� 91.7±0.4 82.5±1.6 97.7±0.1

� 89.2±2.1 63.7±3.4 98.4±0.2

89.6±0.8 72.3±1.1 98.1±0.1

The networks are trained 5 times for each setting on the object ape of the
LINEMOD dataset. The numbers denote mean ± standard deviation

and the other branch for predicting the foreground mask of
the object in the observed image.

3.3 Disentangled Transformation Representation

The representation of the coordinate frames and the rel-
ative SE(3) transformation 1p between the current pose
estimate and the target pose has important ramifications
for the performance of the network. Ideally, we would like
(1) the individual components of these transformations to
be maximally dis-entangled, thereby not requiring the net-
work to learn unnecessarily complex geometric relationships
between translations and rotations, and (2) the transforma-
tions to be independent of the intrinsic camera parameters

and the actual size and coordinate system of an object,
thereby enabling the network to reason about changes in
object appearance rather than accurate distance estimates.

The most obvious choice are camera coordinates to rep-
resent object poses and transformations. Denote the relative
rotation and translation as [R1|t�] (We denote R∗ as rota-
tion and and t∗ as translation in this paper). Given a source
object pose [Rsrc|tsrc], the transformed target pose would be
as follows:

Rtgt = R1Rsrc, ttgt = R1tsrc + t1, (2)

where [Rtgt|ttgt] denotes the target pose resulting from the
transformation. The R1tsrc term indicates that a rotation will
cause the object not only to rotate, but also translate in the
image even if the translation vector t1 equals to zero. Col-
umn (b) in Fig. 4 illustrates this connection for an object
rotating in the image plane. In standard camera coordinates,
the translation t1 of an object is in the 3Dmetric space (meter,
for instance), which couples object size with distance in the
metric space.Thiswould require the network tomemorize the
actual size of each object in order to transformmis-matches in
images to distance offsets. It is obvious that such a represen-
tation is not appropriate, particularly for matching unknown
objects.

(a) (b) (c) (d)

Fig. 4 Rotations using different coordinate systems. (Upper row) The
panels show how a 90◦ rotation in the image plane axis changes the
position of the object shown in (a). In the camera coordinate system,
the center of rotation is in the center of the image, thereby causing an
undesired translation in addition to the object rotation. In the model
coordinate frame, as the frame of the object model can be defined arbi-
trarily, an object might rotate along any axis given the same rotation
vector. Shown here is a CCW rotation, but the same axis might also
result in an out of plane rotation for a differently defined object coor-
dinate frame. In our disentangled representation, the center of rotation
is in the center of the object and the axes are defined parallel to the

camera axes. As a result, a rotation around a specific axis always results
in the same object rotation, independent of the object. (Lower row)
Rotation vectors a network would have to predict in order to achieve
an in-place rotation using the different coordinate systems. Notice the
extra translations required to compensate for the translation caused by
the rotation using camera coordinates (b). In model coordinates, the
network would have to learn the frame specified for the object model
in order to determine the correct rotation axis and angle. In our disen-
tangled representation, rotation axis and angle are independent of the
object

123

International Journal of Computer Vision

(a) (b) (c) (d)

Fig. 5 Translations using camera and our disentangled representations.
In camera coordinates, translations in the image plane are represented by
vectors in 3D space. As a result, the same translation in the 2D image
corresponds to different translation vectors depending on whether an
object is close or far from the camera. In our disentangled represen-
tation, the value of x and y is only related to the 2D vector in the

image-plane. Additionally, as shown in (c), in the camera representa-
tion, a translation along the z-axis is not only difficult to infer from
the image, but also causes a move relative to the center of the image.
In our disentangled translation representation (d), only the change of
scale needs to be estimated, making it independent of other translations
and the metric size and distance of the object

To eliminate these problems, we propose to decouple the
estimation of R1 and t1. First, we move the center of rota-
tion from the origin of the camera to the center of the object
in the camera frame, given by the current pose estimate. In
this representation, a rotation does not change the translation
of the object in the camera frame. The remaining question
is how to choose the directions of the rotational axes of the
coordinate frame. One way is to use the axes as specified in
the 3D object model. However, as illustrated in column (c)
of Fig. 4, such a representation would require the network
to learn and memorize the coordinate frames of each object,
which makes training more difficult and cannot be general-
ized to pose matching of unseen objects. Thus, we propose
to use axes parallel to the axes of the camera frame when
computing the relative rotation. By doing so, the network
can be trained to estimate the relative rotation independently
of the coordinate frame of the 3D object model, as illustrated
in column (d) in Fig. 4.

In order to estimate the relative translation, let ttgt =
(xtgt, ytgt, ztgt) and tsrc = (xsrc, ysrc, zsrc) be the target trans-
lation and the source translation. A straightforward way to
represent translation is t1 = (1x , 1y, 1z) = ttgt − tsrc. How-
ever, it is not easy for the network to estimate the relative
translation in the 3D metric space given only 2D images
without depth information. The network has to recognize the
size of the object, and map the translation in 2D space to
3D according to the object size. Such a representation is not
only difficult for the network to learn, but also has problems
when dealing with unknown objects or objects with similar
appearance but different sizes. Instead of training the network
to directly regress to the vector in the 3D space, we propose
to regress to object changes in the 2D image space as shown
in Fig. 5. Specifically, we train the network to regress to the
relative translation t1 = (vx , vy, vz), where vx and vy denote
the number of pixels the object should move along the image
x-axis and y-axis and vz is the scale change of the object:

vx = fx (xtgt/ztgt − xsrc/zsrc),

vy = fy(ytgt/ztgt − ysrc/zsrc),

vz = log(zsrc/ztgt),

(3)

where fx and fy denote the focal lengths of the camera.
The scale change vz is defined to be independent of the
absolute object size or distance by using the ratio between
the distances of the rendered and observed object. We
use logarithm for vz to make sure that a value of zero
corresponds to no change in scale or distance. Consider-
ing the fact that fx and fy are constant for a specific
dataset, we simply fix it to 1 in training and testing the
network.

Our representation of the relative transformation has
several advantages. First, rotation does not influence the esti-
mation of translation, so that the translation no longer needs
to offset the movement caused by rotation around the camera
center. Second, the intermediate variables vx , vy , vz repre-
sent simple translations and scale change in the image space.
Third, this representation does not require any prior knowl-
edge of the object. Using such a representation, the DeepIM
network can operate independently of the actual size of the
object, its internalmodel coordinate framework, and the cam-
era intrinsics. It only has to learn to transform the rendered
image such that it becomes more similar to the observed
image (Fig. 5).

3.4 Matching Loss

A straightforward way to train the pose estimation network
is to use separate loss functions for rotation and translation.
For example, we can use the angular distance between two
rotations to measure the rotation error and use the �2 dis-
tance to measure the translation error. However, using two
different loss functions for rotation and translation suffers
from the difficulty of balancing the two losses. Kendall and

123

International Journal of Computer Vision

Cipolla (2017) proposed a geometric reprojection error as
the loss function for pose regression that computes the aver-
age distance between the 2D projections of 3D points in the
scene using the ground truth pose and the estimated pose.
Considering the fact that we want to accurately predict the
object pose in 3D, we introduce a modified version of the
geometric reprojection loss in Kendall and Cipolla (2017),
and we call it the Point Matching Loss. Given the ground
truth pose p = [R|t] and the estimated pose p̂ = [R̂|t̂], the
point matching loss is computed as:

Lpose(p, p̂) = 1

n

n∑

i=1

‖(Rxi + t) − (R̂xi + t̂)‖1, (4)

where xi denotes a randomly selected 3D point on the object
model and n is the total number of points (we choose 3000
points in our experiments). The formulation of point match-
ing loss is similar to the one used to compute average distance
(ADD)metric in Eq. 5. The main difference is that other than
using �2 norm, point matching loss computes the average
�1 distance between 3D points transformed by the ground
truth pose and the estimated pose in order to avoid the large
graident caused by outliers and maintain the stability of loss
during training. In this way, it measures how the transformed
3D models match against each other for pose estimation.
Xiang et al. (2018) also uses a variant of the point matching
loss for rotation regression.

3.5 Training and Testing

In training, we assume that we have 3D object models and
images annotated with ground truth 6D object poses. By
adding noises to the ground truth poses as the initial poses,
we can generate the required observed and rendered inputs
to the network along with the pose target output that is the
pose difference between the ground truth pose and the noisy
pose. Then we can train the network to predict the relative
transformation between the initial pose and the target pose.

During testing, we find that the iterative pose refinement
can significantly improve the accuracy. To see, let p(i) be
the pose estimate after the i-th iteration of the network. If
the initial pose estimate p(0) is relatively far from the correct
pose, the rendered image imgrend(p

(0)) may have only little
viewpoint overlap with the observed image imgobs. In such
cases, it is very difficult to accurately estimate the relative
pose transformation 1p(0) directly. This task is even harder
if the network has no priori knowledge about the object to
be matched. In general, it is reasonable to assume that if
the network improves the pose estimate p(i+1) by updating
p(i) with 1p(i) in the i-th iteration, then the image rendered
according to this new estimate, imgrend(p

(i+1)) is also more
similar to the observed image imgobs than imgrend(p

(i)) was

in the previous iteration, thereby providing input that can be
matched more accurately.

However, we found that, if we train the network to regress
the relative pose in a single step, the estimates of the trained
network do not improve over multiple iterations in testing.
To generate a more realistic data distribution for training
similar to testing,we performmultiple iterations during train-
ing as well. Specifically, for each training image and pose,
we apply the transformation predicted from the network to
the pose and use the transformed pose estimate as another
training example for the network in the next iteration. By
repeating this process multiple times, the training data bet-
ter represents the test distribution and the trained network
also achieves significantly better results during iterative test-
ing [such an approach has also proven useful for iterative
hand posematching (Oberweger et al. 2015) and image align-
ment (Lin and Lucey 2017)].

4 Experiments

We conduct extensive experiments on the LINEMODdataset
(Hinterstoisser et al. 2012b) and the Occlusion LINEMOD
dataset (Brachmann et al. 2014) to evaluate our DeepIM
framework for 6D object pose estimation. We test differ-
ent properties of DeepIM and show that it surpasses other
RGB-only methods by a large margin. We also show that our
network can be applied to pose matching of unseen objects
during training.

4.1 Training Implementation Details

Training Parameters: We use the pre-trained FlowNetSim-
ple (Dosovitskiy et al. 2015) to initialize the weights in
our network. Weights of the new layers are randomly ini-
tialized, except for the additional weights in the first conv
layer that deals with the input masks and the fully-connected
layer that predicts the translation, which are initialized with
zeros. Other than predicting the pose transformation, the net-
work also predicts the optical flow and the foreground mask.
Including the two additional losses could slightly increase
the pose estimation performance and make the training more
stable. Specifically, we use the optical flow loss Lflow as in
FlowNet (Dosovitskiy et al. 2015) and the sigmoid cross-
entropy loss as the mask loss Lmask. Two deconvolutional
blocks in FlowNet are inherited to produce the feature map
used for the mask and the optical flow prediction, whose
spatial scale is 0.0625. Two 1 × 1 convolutional layers with
output channel 1 (mask prediction) and 2 (flow prediction)
are appended after this feature map. The predictions are then

123

International Journal of Computer Vision

(a) Synthetic Data for LINEMOD (b) Synthetic Data for Occlusion
LINEMOD

(c) Synthetic Data for YCB-Video

Fig. 6 Synthetic Data for the LINEMOD, Occlusion LINEMOD and
YCB-Video separately. a Synthetic training data used when training on
the LINEMOD dataset, only one object is presented in the image so
there is no occlusion. b Synthetic training data used when training on
the Occlusion LINEMOD dataset, multiple objects are presented in one

image so one object may be occluded by other objects. c Synthetic train-
ing data used when training on the YCB-Video dataset. These images
are rendered on the fly, so we only render two objects to maintain effi-
ciency

bilinearly up-sampled to the original image size (480× 640)
to compute losses.

The overall loss is L = αLpose+βLflow+γ Lmask, where
we use α = 0.1, β = 0.25, γ = 0.03 throughout the exper-
iments (except some of our ablation studies). Each training
batch contains 16 images. We train the network with 4 GPUs
where each GPU processes 4 images. We generate 4 items
for each image as described in Sect. 3.1: two images and two
masks. The observed mask is randomly dilated with no more
than 10 pixels to avoid over-fitting.

The Distribution of Rendered Pose During Training: The
rendered image imgrend and mask mrend are randomly gen-
erated during training without using prior knowledge of the
initial poses in the test set. Specifically, given a ground truth
pose p̂, we add noises to p̂ to generate the rendered poses. For
rotation, we independently add a Gaussian noise N (0, 152)
to each of the three Euler angles of the rotation. If the angular
distance between the new pose and the ground truth pose is
more than 45◦, we discard the new pose and generate another
one in order to make sure the initial pose for refinement is
within 45◦ of the ground truth pose during training. For trans-
lation, considering the fact that RGB-based pose estimation
methods usually have larger standard deviation on depth esti-
mation, the following Gaussian noises are added to the three
components of the translation: �x ∼ N (0, 0.012),�y ∼
N (0, 0.012),�z ∼ N (0, 0.052), where the standard devia-
tions are 1 cm, 1 cm and 5 cm, respectively.

Synthetic Training Data: Real training images provided in
existing datasets may be highly correlated or lack images in
certain situations such as occlusions between objects. There-
fore, generating synthetic training data is essential to enable
the network to deal with different scenarios in testing. In

generating synthetic training data for the LINEMODdataset,
considering the fact that the elevation variation is limited in
this dataset, we calculate the elevation range of the objects in
the provided training data. Then we rotate the object model
with a randomly generated quaternion and repeat it until the
elevation is within this range. The translation is randomly
generated using the mean and the standard deviation com-
puted from the training set. During training, the background
of the synthetic image is replaced by a randomly chosen
indoor image from the PASCAL VOC dataset as shown in
Fig. 6.

For the Occlusion LINEMOD dataset, multiple objects
are rendered into one image in order to introduce occlu-
sions among objects. The number of objects ranges from 3
to 8 in these synthetic images. As in the LINEMOD dataset,
the quaternion of each object is also randomly generated to
ensure that the elevation range is within that of training data
in the Occlusion LINEMOD dataset. The translations of the
objects in the same image are drawn according to the distri-
butions of the objects in the YCB-Video dataset (Xiang et al.
2018) by adding a small Gaussian noise.

For the YCB-Video dataset, synthetic images are gener-
ated on the fly. Other than the target object, we also render
another object close to it to introduce partial occlusion.

The real training images may also lack variations in light
conditions exhibited in the real world or in the testing set.
Therefore, we add a random light condition to each syn-
thetic image in both theLINEMODdataset and theOcclusion
LINEMOD dataset.

4.2 Testing Implementation Details

Testing Parameters: The mask prediction branch and the
optical flow branch are removed during testing. Since there
is no ground truth segmentation of the object in testing, we
use the tightest bounding box of the rendered mask mrend

123

International Journal of Computer Vision

instead, so the network searches the neighborhood near the
estimated pose to find the target object tomatch. Unless spec-
ified, we use the pose estimates from PoseCNN (Xiang et al.
2018) as the initial poses. Our DeepIM network runs at 12 fps
per object using an NVIDIA 1080 Ti GPU with 2 iterations
during testing.

Pose Initialization During Inference: Our framework takes
an input image and an initial pose estimation of an object in
the image as inputs, and then refine the initial pose iteratively.
In our experiments, we have tested two pose initialization
methods.

The first one is PoseCNN (Xiang et al. 2018), a convolu-
tional neural network designed for 6Dobject pose estimation.
PoseCNN performs three tasks for 6D pose estimation, i.e.,
semantic labeling to classify image pixels into object classes,
localizing the center of the object on the image to estimate
the 3D translation of the object, and 3D rotation regression.
In our experiments, we use the 6D poses from PoseCNN as
initial poses for pose refinement.

To demonstrate the robustness of our framework on pose
initialization, we have implemented a simple 6D pose esti-
mation method for pose initialization, where we extend the
Faster R-CNN framework designed for 2D object detec-
tion (Ren et al. 2015) to 6D pose estimation. Specifically,
we use the bounding box of the object from Faster R-CNN
to estimate the 3D translation of the object. The center of the
bounding box is treated as the center of the object. The dis-
tance of the object is estimated by maximizing the overlap of
the projection of the 3D object model with the bounding box.
To estimate the 3D rotation of the object, we add a rotation
regression branch to Faster R-CNN as in PoseCNN. In this
way, we can obtain a 6D pose estimation for each detected
object from Faster R-CNN.

In our experiments on the LINEMOD dataset described
in Sect. 4.4, we have shown that, although the initial poses
from Faster R-CNN are much worse than the poses from
PoseCNN, our framework is still able to refine these poses
using the sameweights. The performance gap between using
the two different pose initialization methods is quite small,
which demonstrates the ability of our framework in using
different methods for pose initialization.

4.3 EvaluationMetrics

We use the following three evaluation metrics for 6D object
pose estimation. (1) The 5◦, 5 cm metric considers an esti-
mated pose to be correct if its rotation error is within 5◦
and the translation error is below 5 cm. (2) The 6D Pose
metric (Hinterstoisser et al. 2012b) computes the average
distance between the 3D model points transformed using the
estimated pose and the ground truth pose. For symmetric

objects, we use the closest point distance in computing the
average distance. An estimated pose is correct if the average
distance is within 10% of the 3Dmodel diameter. (3) The 2D
Projection metric computes the average distance of the 3D
model points projected onto the image using the estimated
pose and the ground truth pose. An estimated pose is correct
if the average distance is smaller than 5 pixels.
k◦, k cm: Proposed in Shotton et al. (2013). The 5◦, 5 cm
metric considers an estimated pose to be correct if its rotation
error is within 5◦ and the translation error is below 5 cm.
We also provided the results with 2◦, 2 cm and 10◦, 10 cm in
Table 6 to give a comprehensive view about the performance.

For symmetric objects such as eggbox and glue in the
LINEMOD dataset, we compute the rotation error and the
translation error against all possible ground truth poses with
respect to symmetry and accept the result when it matches
one of these ground truth poses.

6D Pose: Hinterstoisser et al. (2012b) use the average
distance (ADD) metric to compute the averaged distance
between points transformed using the estimated pose and
the ground truth pose as in Eq. 5:

ADD = 1

m

∑

x∈M
‖(Rx + t) − (R̂x + t̂)‖2, (5)

where m is the number of points on the 3D object model,
M is the set of all 3D points of this model, p = [R|t] is the
ground truth pose and p̂ = [R̂|t̂] is the estimated pose. Here
the number of points m can be different from the number of
points n used in Eq. 4 as the point clouds used for training is
a subset randomly sampled from the original point clouds to
reduce the time to compute the loss during training. Rx + t
indicates transforming the point with the given SE(3) trans-
formation (pose) p. Following Brachmann et al. (2016), we
compute the distance between all pairs of points from the
model and regard the maximum distance as the diameter d
of this model. Then a pose estimation is considered to be cor-
rect if the computed average distance is within 10% of the
model diameter. In addition to using 0.1d as the threshold,
we also provided pose estimation accuracy using thresholds
0.02d and 0.05d in Table 6. We use 0.1d as the threshold of
6D Pose metric in the following paper if not specified.

For symmetric objects, we use the closest point distance
in computing the average distance for 6D pose evaluation as
in Hinterstoisser et al. (2012b):

ADD-S = 1

m

∑

x1∈M
min
x2∈M

‖(Rx1 + t) − (R̂x2 + t̂)‖2. (6)

In the YCB-Video Dataset, we use the metric ADD and
ADD-S described in Xiang et al. (2018). After getting the

123

International Journal of Computer Vision

ADD and ADD-S distance described in Eqs. 5 and 6, we
vary the threshold from 0 to 10 cm and accumulate the area
under the accuracy curves.

2D Projection: focuses on the matching of pose estimation
on 2D images. This metric is considered to be important
for applications such as augmented reality. We compute the
error using Eq. 7 and accept a pose estimation when the 2D
projection error is smaller than a predefined threshold:

Proj. 2D = 1

m

∑

x∈M
‖K(Rx + t) − K(R̂x + t̂)‖2, (7)

whereK denotes the intrinsic parameter matrix of the camera
andK(Rx+t) indicates transforming a 3Dpoint according to
the SE(3) transformation and then projecting the transformed
3D point onto the image. In addition to using 5 pixels as the
threshold, we also show our results with the thresholds 2
pixels and 10 pixels. We use 5 pixels as the threshold of Proj.
2D metric in the following paper if not specified.

For symmetric objects such as eggbox and glue in the
LINEMOD dataset, we compute the 2D projection error
against all possible ground truth poses and accept the result
when it matches one of these ground truth poses.

4.4 Experiments on the LINEMODDataset

The LINEMODdataset contains 15 objects.We train and test
our method on 13 of them as other methods in the literature.
We follow the procedure in Brachmann et al. (2016) to split
the dataset into the training and test sets, with around 200
images for each object in the training set and 1000 images
in the test set. Figure 8 shows a subset of objects used in
LINEMOD dataset. These objects are textureless and thus
difficult for pose estimation methods using only local fea-
tures.

Training Strategy: For every image, we generate 10 random
poses near the ground truth pose, resulting in 2000 training
samples for each object in the training set. Furthermore, we
generate 10,000 synthetic images for each object where the
pose distribution is similar to the real training set. For each
synthetic image, we generate 1 random pose near its ground

truth pose. Thus, we have a total of 12,000 training samples
for each object in training. The background of a synthetic
image is replacedwith a randomly chosen indoor image from
PASCAL VOC (Everingham et al. 2010). We train the net-
works for 8 epochs with initial learning rate 0.0001. The
learning rate is divided by 10 after the 4th and 6th epoch,
respectively.

Ablation Study on Iterative Training and Testing: Table 2
shows the results that use different numbers of iterations dur-
ing training and testing. The networks with train_i ter = 1
and train_i ter = 2 are trained with 32 and 16 epochs
respectively to keep the total number of updates the same
as train_i ter = 4. The table shows that without itera-
tive training (train_i ter = 1), multiple iteration testing
does not improve, potentially even making the results worse
(test_i ter = 4). We believe that the reason is due to the
fact that the network is not trained with enough rendered
poses close to their ground truth poses. The table also shows
that one more iteration during training and testing already
improves the results by a large margin. The network trained
with 2 iterations and tested with 2 iterations is slightly bet-
ter than the one trained with 4 iterations and tested with 4
iterations. This may be because the LINEMOD dataset is
not sufficiently difficult to generate further improvements by
using 3 or 4 iterations. Since it is not straightforward to deter-
mine how many iterations to use in each dataset, we use 4
iterations during training and testing in all other experiments.

Ablation Study on the Zoom in Strategy, Network Struc-
tures, Transformation Representations, and Loss Functions:
Table 3 summarizes the ablation studies on various aspects of
DeepIM. The “zoom” column indicates whether the network
uses full images as its input or zoomed in bounding boxes
up-sampled to the original image size. Comparing rows 5 and
7 shows that the higher resolution achieved via zooming in
provides very significant improvements.

“Regressor”: We train the DeepIM network jointly over
all objects, generating a pose transformation independent
of the specific input object (labeled “shared” in “regressor”
column). Alternatively, we could train a different 6D pose
regressor for each individual object by using a separate fully

Table 2 Ablation study of the
number of iterations during
training and testing

Train iter Init 1 2 4

Test iter 1 2 4 1 2 4 1 2 4

5 cm 5◦ 19.4 57.4 58.8 54.6 76.3 86.2 86.7 70.2 83.7 85.2

6D Pose 62.7 77.9 79.0 76.1 83.1 88.7 89.1 80.9 87.6 88.6

Proj. 2D 70.2 92.4 92.6 89.7 96.1 97.8 97.6 94.6 97.4 97.5

123

International Journal of Computer Vision

Table 3 Ablation study on
different design choices of the
DeepIM network on the
LINEMOD dataset

Row Methods 5 cm 5◦ 6D Pose Proj. 2D

Zoom Regressor Network Coordinate Loss

1 � – Sep. Disentangled PM 83.3 87.6 96.2

2 � Sep. Shared Model PM 79.2 87.5 95.4

3 � Sep. Shared Disentangled PM 86.6 89.5 96.7

4 Shared Shared Camera PM 16.6 44.3 62.5

5 Shared Shared Disentangled PM 38.3 65.2 80.8

6 � Shared Shared Disentangled Dist 86.5 79.2 96.2

7 � Shared Shared Disentangled PM 85.2 88.6 97.5

Table 4 Ablation study on two
different methods for generating
initial poses on the LINEMOD
dataset

Method PoseCNN PoseCNN + Ours Faster R-CNN Faster R-CNN + Ours

5 cm 5◦ 19.4 85.2 11.9 83.4

6D Pose 62.7 88.6 33.1 86.9

Proj. 2D 70.2 97.5 20.9 95.7

connected layer for each object after the final FC256 layer
shown in Fig. 3. This setting is labeled as “sep.” in Table 3.
Comparing rows 3 and 7 shows that both approaches pro-
vide nearly indistinguishable results. But the shared network
provides some efficiency gains.

“Network”: Similarly, instead of training a single network
over all objects, we could train separate networks, one for
each object as in Rad and Lepetit (2017). Comparing row
1 to 7 shows that a single, shared network provides better
results than individual ones, which indicates that training
on multiple objects can help the network learn a more gen-
eral representation for matching. We also present an ablation
study of mask prediction and flow prediction in Table 1. It
shows that when trained with these two auxiliary branches,
the network could achieve the highest performance.

“Coordinate”: This column investigates the impact of our
choice of coordinate frame to reason about object transfor-
mations, as described in Fig. 4. The row labeled “camera”
provides results when choosing the camera frame of refer-
ence as the representation for the object pose, rows labeled
“model” move the center of rotation to the object model and
choose the object model coordinate frame to reason about
rotations, and the “disentangled” rows provide our disentan-
gled approach of moving the center into the object model
while keeping the camera coordinate frame for rotations.
Comparing rows 2 and 3 shows that reasoning in the camera
rotation frame provides slight improvements. Furthermore,
it should be noted that only our “disentangled” approach is
able to operate on unseen objects. Comparing rows 4 and 5
shows the large improvements our representation achieves
over the common approach of reasoning fully in the camera
frame of reference.

“Loss”: The traditional loss for pose estimation is spec-
ified by the distance (“Dist”) between the estimated and

ground truth 6D pose coordinates, i.e., angular distance for
rotation and euclidean distance for translation. Comparing
rows 6 and 7 indicates that our point matching loss (“PM”)
provides significantly better results especially on the 6D pose
metric, which is the most important measure for reasoning
in 3D space.

Application to Different Initial Pose Estimation Networks:
Table 4 provides results when we initialize DeepIM with
two different pose estimation networks. The first one is
PoseCNN (Xiang et al. 2018), and the second one is a simple
6D pose estimation method based on Faster R-CNN (Ren
et al. 2015). Specifically, we use the bounding box of the
object from Faster R-CNN to estimate the 3D translation of
the object. The center of the bounding box is treated as the
center of the object. The distance of the object is estimated
by maximizing the overlap of the projection of the 3D object
model with the bounding box. To estimate the 3D rotation
of the object, we add a rotation regression branch to Faster
R-CNN as in PoseCNN. As we can see in Table 4, our net-
work achieves very similar pose estimation accuracy even
when initialized with the estimates from the extension of
Faster R-CNN, which are not as accurate as those provided
by PoseCNN (Xiang et al. 2018).

Comparison with the State-of-the-Art 6D Pose Estimation
Methods: Table 5 shows the comparison with the best color-
only techniques on the LINEMODdataset. DeepIM achieves
very significant improvements over all prior methods, even
those that also deploy refinement steps [BB8 (Rad andLepetit
2017) and SSD-6D (Kehl et al. 2017)].

123

International Journal of Computer Vision

Table 5 Comparison with state-of-the-art methods on the LINEMOD dataset

Methods Brachmann et al. (2016) BB8 w/ref.
(Rad and Lepetit
2017)

SSD-6D w/ref.
(Kehl et al. 2017)

Tekin et al. (2017) PoseCNN
(Xiang et al. 2018)

PoseCNN
(Xiang et al. 2018) +
Ours

5 cm 5◦ 40.6 69.0 – – 19.4 85.2

6D Pose 50.2 62.7 79 55.95 62.7 88.6

Proj. 2D 73.7 89.3 – 90.37 70.2 97.5

The bold numbers indicate highest number in this comparison

Table 6 Results of using more
detailed thresholds on the
LINEMOD dataset

Metric threshold (n◦, n cm) 6D Pose Projection 2D

(2, 2) (5, 5) (10,10) 0.02d 0.05d 0.10d 2 px. 5 px. 10 px.

Ape 37.7 90.4 98.0 14.3 48.6 77.0 92.2 98.4 99.6

Benchvise 37.6 88.7 98.2 37.5 80.5 97.5 67.7 97.0 99.6

Camera 56.1 95.8 99.2 30.9 74.0 93.5 86.3 98.9 99.7

Can 58.0 92.8 99.0 41.4 84.3 96.5 98.6 99.7 99.8

Cat 33.5 87.6 97.8 17.6 50.4 82.1 88.4 98.7 100.0

Driller 49.4 92.9 99.1 35.7 79.2 95.0 64.2 96.1 99.4

Duck 30.8 85.2 98.5 10.5 48.3 77.7 88.1 98.5 99.8

Eggbox 32.1 63.9 94.5 34.7 77.8 97.1 53.4 96.2 99.6

Glue 32.8 83.0 98.0 57.3 95.4 99.4 81.5 98.9 99.7

Holepuncher 8.7 54.5 93.8 5.3 27.3 52.8 59.1 96.3 99.5

Iron 47.5 92.7 99.3 47.9 86.3 98.3 67.4 97.2 99.9

Lamp 47.5 90.9 98.4 45.3 86.8 97.5 60.0 94.2 99.0

Phone 34.8 89.6 98.6 22.7 60.5 87.7 75.9 97.7 99.8

Mean 39.0 85.2 97.9 30.9 69.2 88.6 75.6 97.5 99.7

Detailed Results on the LINEMOD Dataset: Table 6 shows
our detailed results on all the 13 objects in the LINEMOD
dataset. The network is trained and tested with 4 iterations
and 8 epochs. Initial poses are estimated by PoseCNN (Xiang
et al. 2018).

4.5 Experiments on the Occlusion LINEMODDataset

The Occlusion LINEMOD dataset proposed in Brachmann
et al. (2014) shares the same images used in the LINEMOD
dataset (Hinterstoisser et al. 2012b), but annotated 8 objects
in one video that are heavily blocked by other objects.

Training: For every real image, we generate 10 random
poses as described in Sect. 4.4. Considering the fact that
most of the training data lacks occlusions,wegenerated about
20,000 synthetic images with multiple objects in each image.
By doing so, every object has around 12,000 images which
are partially occluded, and a total of 22,000 images for each
object in training. We perform the same background replace-
ment and training procedure as in the LINEMOD dataset.

Comparison with the State-of-the-Art Methods: The com-
parison between our method and other RGB-only methods is
shown in Fig. 7. We only show the plots with accuracies on
the 2D Projection metric because these are the only results
reported in Rad and Lepetit (2017) and Tekin et al. (2017)
(results for eggbox and glue use a symmetric version of this
accuracy). It can be seen that our method greatly improves
the pose accuracy generated by PoseCNN and surpasses all
other RGB-only methods by a large margin. It should be
noted that BB8 (Rad and Lepetit 2017) achieves the reported
results only when using ground truth bounding boxes dur-
ing testing. Our method is even competitive with the results
that use depth information and ICP to refine the estimates
of PoseCNN. Figure 8 shows some pose refinement results
from our method on the Occlusion LINEMOD dataset.

Detailed Results on the Occlusion LINEMOD Dataset:
Table 7 shows our results on the Occlusion LINEMOD
dataset. We can see that DeepIM can significantly improve
the initial poses from PoseCNN. Notice that the diameter
here is computed using the extents of the 3D model follow-

123

International Journal of Computer Vision

Fig. 7 Comparison with state-of-the-art methods on the Occlusion LINEMOD dataset (Brachmann et al. 2014). Accuracies are measured via the
Projection 2D metric

Fig. 8 Examples of refined poses on the Occlusion LILNEMOD dataset using the results from PoseCNN (Xiang et al. 2018) as initial poses. The
red and green lines represent the silhouettes of the initial estimates and our refined poses, respectively (Color figure online)

ing the setting of Xiang et al. (2018) and other RGB-D based
methods. Some qualitative results are shown in Fig. 9.

4.6 Experiments on the YCB-Video Dataset

The YCB-Video Dataset, which is proposed in Xiang et al.
(2018), annotates 21 YCB objects (Calli et al. 2015) in 92
video sequences (133,827 frames). It is a challenging dataset
as the objects have varied sizes (diameter from 10 to 40 cm),
different types of symmetries, and a large variety of occlu-
sions and lighting conditions. We split the dataset as Xiang
et al. (2018), with 80 video sequences for training and 2949
keyframes in the remaining 12 videos for testing.

Training Strategy: As images in one video are similar to
those in nearby frames,weuse 1 imageout of every 10 images
in the training set for training. Training batches consist of

captured real images from the dataset (1/8) and synthetic
images which are partially occluded and generated on the fly
(7/8). The network is trained with 8 epochs and we decrease
the learning rate after 4 and 6 epochs. We found that with
large training sets and enough epochs it was not necessary
to include the flow prediction and the masks in the input, so
we removed those branches and the corresponding loss from
this experiment. Again, we train all the categories with one
network and shared regressor.

Evaluation Metric: We follow the PoseCNN (Xiang et al.
2018) paper when evaluating the results which uses accu-
racy under curve of ADD (Eq. 5) and ADD-S (Eq. 6 for
each object. We also report the results of ADD(-S) and AUC
ADD(-S) metric which is similar to the one we used in
LINEMOD (Brachmann et al. 2014). More specifically, we
use ADD when the object is not symmetric and use ADD-S

123

International Journal of Computer Vision

Table 7 Results on the Occlusion LINEMOD dataset

Metric (5◦, 5 cm) 6D Pose Projection 2D

Method Init. Refined Init. Refined Init. Refined

Ape 2.3 51.8 9.9 59.2 34.6 69.0

Can 4.1 35.8 45.5 63.5 15.1 56.1

Cat 0.3 12.8 0.8 26.2 10.4 50.9

Driller 2.5 45.2 41.6 55.6 7.4 52.9

Duck 1.8 22.5 19.5 52.4 31.8 60.5

Eggbox 0.0 17.8 24.5 63.0 1.9 49.2

Glue 0.9 42.7 46.2 71.7 13.8 52.9

Hole. 1.7 18.8 27.0 52.5 23.1 61.2

Mean 1.7 30.9 26.9 55.5 17.2 56.6

The bold numbers indicate highest number in this comparison
The network is trained and tested with 4 iterations

when the object is symmetric. Thenwe compute the averaged
accuracy as the final result.

Symmetric Objects: As described in Sect. 4.1, we only keep
rendered poses that have an angular distance less than 45◦
from ground truth poses during training, which means we

don’t need to take special care of objects which have a sym-
metry angle of more than 90◦. However, object 024_bowl in
the YCB-Video dataset is rotational symmetric. To deal with
this kind of symmetry, rather than using the ground truth pose
p̂ provided by the dataset to compute the loss, we choose the
distance to the closest pose p∗ among all poses that look the
same as the ground truth pose:

p∗ = argmin
p∈Q

Θ(p,psrc) (8)

Here Q denotes the set of poses whose corresponding ren-
dered images are the same as the one rendered using the
ground truth pose. We assume that the rotation axis goes
through the origin of the model frame so that no translation
needs to be considered. In the experiment, we calibrate the
rotation axis manually and use bisection search to locate the
closest ground truth pose. Table 8 compares networks trained
with and without this strategy, showing that this training loss
is useful.

Comparison with State-of-the-Art Methods: Table 10
compares our results with two state-of-the-art methods:

Fig. 9 Some pose refinement results on the Occlusion LINEMOD dataset. The red and green lines represent the edges of 3D model projected from
the initial poses and our refined poses respectively (Color figure online)

123

International Journal of Computer Vision

Table 8 Ablation study about using closest ground truth pose to handle
rotational symmetric objects

024_bowl init Common Closest

ADD 54.2 55.6 68.4

ADD-S 76.0 70.6 80.9

These three columns show the evaluation results of initial poses, poses
refined by a DeepIM network that treats 024_bowl as a regular object,
and poses refined by a network trained with closest ground truth pose.
Initial poses are generated as rendered pose during training described
in Sect. 4.1

PoseCNN (Xiang et al. 2018) and DenseFusion (Wang et al.
2019).As can be seen,DeepIM greatly refines the initial pose
provided by PoseCNN and is on par with those refined with
ICP on many objects despite not using any depth or point

cloud data. Notice that DeepIM produces low numbers on
symmetric objects, like 024_bowl, under ADD metric. This
is because the ADD metric cannot well represent the perfor-
mance on symmetric objects as such objects have multiple
correct poses but only one of these poses are labeled as the
ground truth in the dataset. Table 9 shows the result compared
with PoseCNN (Xiang et al. 2018) and PoseRBPF (Deng
et al. 2019) using the ADD(-S) metrci which can avoid such
problems. Figure 10 visualizes some pose refinement results
from our method on the YCB-Video dataset.

Tracking in the YCB-Video Dataset: Considering the sim-
ilarity between pose refinement and object tracking, it is
natural to use DeepIM to track objects in videos. There-
fore, we conducted an experiment testing DeepIM’s ability

Table 9 Overall results on YCB video results compared with PoseCNN (Xiang et al. 2018) and PoseRBPF (Deng et al. 2019)

Methods RGB RGB-D

PoseCNN PoseRBPF++ PoseCNN + DeepIM DeepIM+ Tracking PoseCNN + ICP PoseRBPF PoseCNN + DeepIM

ADD(-S) < 2 cm 27.55 – 71.5 79.0 78.9 – 90.3

AUC of ADD(-S) 61.31 64.4 81.9 85.9 86.6 88.5 90.4

The bold numbers indicate highest number in this comparison
The ADD(-S) metric and AUC ADD(-S) metric is introduced in Sect. 4.6

Fig. 10 Examples of refined poses on the YCB-Video dataset which use results from PoseCNN (Xiang et al. 2018) as initial poses. The green and
red lines represent the silhouettes of the initial estimates and our refined poses, respectively (Color figure online)

123

International Journal of Computer Vision

Ta
bl
e
10

D
et
ai
le
d
re
su
lts

on
th
e
Y
C
B
-v
id
eo

da
ta
se
tc
om

pa
re
d
w
ith

Po
se
C
N
N
(X

ia
ng

et
al
.2

01
8)

an
d
D
en
se
Fu

si
on

(W
an
g
et
al
.2
01
9)

M
et
ho
ds

R
G
B

R
G
B
-D

Po
se
C
N
N

Po
se
C
N
N
+
D
ee
pI
M

D
ee
pI
M
T
ra
ck
in
g

Po
se
C
N
N
+
IC
P

D
en
se
Fu

si
on

Po
se
C
N
N
+
D
ee
pI
M

E
va
lu
at
io
n
m
et
ri
c

A
D
D

A
D
D
-S

A
D
D

A
D
D
-S

A
D
D

A
D
D
-S

A
D
D

A
D
D
-S

A
D
D
-S

A
D
D

A
D
D
-S

00
2_
m
as
te
r_
ch
ef
_c
an

50
.2

83
.9

71
.2

93
.1

89
.0

93
.8

68
.1

95
.8

96
.4

78
.0

96
.3

00
3_
cr
ac
ke
r_
bo
x

53
.1

76
.9

83
.6

91
.0

88
.5

93
.0

83
.4

92
.7

95
.5

91
.4

95
.3

00
4_
su
ga
r_
bo
x

68
.4

84
.3

94
.1

96
.2

94
.3

96
.3

97
.2

98
.2

97
.5

97
.6

98
.2

00
5_
to
m
at
o_
so
up
_c
an

66
.2

81
.0

86
.1

92
.4

89
.1

93
.2

81
.8

94
.5

94
.6

90
.3

94
.8

00
6_
m
us
ta
rd
_b
ot
tle

81
.0

90
.4

91
.5

95
.1

92
.0

95
.1

98
.0

98
.6

97
.2

97
.1

98
.0

00
7_
tu
na
_fi

sh
_c
an

70
.7

88
.1

87
.7

96
.1

92
.0

96
.4

83
.9

97
.1

96
.6

92
.2

98
.0

00
8_
pu
dd
in
g_
bo
x

62
.7

79
.1

82
.7

90
.7

80
.1

88
.3

96
.6

97
.9

96
.5

83
.5

90
.6

00
9_
ge
la
tin

_b
ox

75
.2

87
.2

91
.9

94
.3

92
.0

94
.4

98
.1

98
.8

98
.1

98
.0

98
.5

01
0_
po
tte
d_
m
ea
t_
ca
n

59
.5

78
.5

76
.2

86
.4

78
.0

88
.9

83
.5

92
.7

91
.3

82
.2

90
.3

01
1_
ba
na
na

72
.3

86
.0

81
.2

91
.3

81
.0

90
.5

91
.9

97
.1

96
.6

94
.9

97
.6

01
9_
pi
tc
he
r_
ba
se

53
.3

77
.0

90
.1

94
.6

90
.4

94
.7

96
.9

97
.8

97
.1

97
.4

97
.9

02
1_
bl
ea
ch
_c
le
an
se
r

50
.3

71
.6

81
.2

90
.3

81
.7

90
.5

92
.5

96
.9

95
.8

91
.6

96
.9

02
4_
bo

w
l

30
.0

70
.0

8.
6

81
.4

38
.8

90
.6

47
.6

80
.8

88
.2

8.
1

87
.0

02
5_
m
ug

58
.5

78
.2

81
.4

91
.3

83
.2

92
.0

81
.1

95
.0

97
.1

94
.2

97
.6

03
5_
po
w
er
_d
ri
ll

55
.3

72
.7

85
.5

92
.3

85
.4

92
.3

97
.7

98
.2

96
.0

97
.2

97
.9

03
6_
w
oo
d_

bl
oc
k

26
.6

64
.3

60
.0

81
.9

44
.3

75
.4

70
.9

87
.6

89
.7

81
.1

91
.5

03
7_
sc
is
so
rs

35
.8

56
.9

60
.9

75
.4

70
.3

84
.5

78
.4

91
.7

95
.2

92
.7

96
.0

04
0_
la
rg
e_
m
ar
ke
r

58
.3

71
.7

75
.6

86
.2

80
.4

91
.2

85
.3

97
.2

97
.5

88
.9

98
.2

05
1_
la
rg
e_
cl
am

p
24
.6

50
.2

48
.4

74
.3

73
.9

84
.1

52
.1

75
.2

72
.9

54
.2

77
.9

05
2_
ex
tr
a_
la
rg
e_
cl
am

p
16
.1

44
.1

31
.0

73
.3

49
.3

90
.3

26
.5

64
.4

69
.8

36
.5

77
.8

06
1_
fo
am

_b
ri
ck

72
.9

88
.2

35
.9

81
.9

91
.6

95
.5

90
.5

97
.4

92
.5

48
.2

97
.6

M
E
A
N

53
.4

74
.6

71
.7

88
.1

79
.3

91
.0

80
.6

92
.4

93
.0

80
.7

94
.0

T
he

bo
ld

nu
m
be
rs
in
di
ca
te
sy
m
m
et
ri
c
ob

je
ct
s

T
he

ne
tw
or
k
is
tr
ai
ne
d
an
d
te
st
ed

w
ith

4
ite

ra
tio

ns
.T

he
A
D
D
an
d
A
D
D
-S

is
sh
or
tf
or

A
U
C
of

A
D
D
an
d
A
U
C
of

A
D
D
-S

123

International Journal of Computer Vision

Fig. 11 Examples on tracking in the real world, using the same network as in Table 10 and no prior knowledge about focal length. The first row
shows the images captured with a webcam and the second row renders the object onto the image based on the estimated pose

to track objects in the YCB-Video dataset. Provided with the
ground truth pose of an object in the first frame of each video,
DeepIM can perform tracking by using the refined pose esti-
mate from the previous frame as the initial pose of the next
frame. Rather than doing inference only on key frames, we
applied DeepIM to all images in the test video so that the
object poses were close between successive frames.

In order to determine when DeepIM loses track of an
object due to heavy occlusion, we follow a simple strategy:
we count the tracking as “lost” if the last iterationof the last 10
frames has an average rotation greater than 10◦ or an average
translation greater than 1 cm. Once the tracking is marked
as lost, the network will be re-initialzed with PoseCNN’s
prediction. This strategy is designed with the intuition that
successful tracking should have a small offset at the last itera-
tion. Re-initialization happens every 340 frames on average.
Tables 9 and 10 shows our numerical results. Notice that the
results of tracking are better than PoseCNN + DeepIM in
most cases and are comparable to the results refined with
ICP which uses depth information. Also note that the perfor-
mance on object 036_wood_block is bad because the model
of the wooden block is different from the object used in the
actual dataset video, which makes it nearly impossible to
match the model with the image.

Tracking YCB Objects in Real Scenes: To demonstrate our
framework’s generalization, we use our network to track
objects in real scenes. This means we don’t have any prior
knowledge about the lighting conditions, background, or
camera parameters. Similar to tracking on the YCB-Video
dataset, we use DeepIM to refine poses predicted from the
previous frame. Thanks to the disentangled representation,
we did not have to calibrate the camera to get its intrin-
sic matrix. Figure 11 shows some tracking results using our
method in the real world environment in real time.

Using Depth Information: Other than using RGB images to
do pose refinement, DeepIMcan be easily extended to uti-
lize depth information to improve its performance. Here we
append the depth images of the observed image and the ren-
dered imagewith the two zero-initialized additional channels
in the first convolution (one for the rendered depth and the
other for the observed depth). To provide the network with
information of the center of the object, we normalize the
depth images by subtract them from the depth of the object’s
center. The results are shown in Table 10.

Failure Cases: In Fig. 12 we show 10 instances that the
network fails to refine to a correct pose. They can be grouped
into five categories: (1) discrepancy between object models
and images. This can be caused by bad light conditions or
an inaccurate object model; (2) few patterns to match. This
usually happens when only certain featureless side-views are
visible or the object is heavily occluded; (3) objects’ shapes
are unusual and difficult to learn; (4) the initial pose is too
far away from the correct pose; (5) objects with tiny key
components.

4.7 Application to Unseen Objects and Unseen
Categories

As stated in Sect. 3.3, we designed the disentangled pose rep-
resentation such that it is independent of the coordinate frame
and the size of a specific 3D object model. In other words, the
transformation predicted from the network does not need to
have prior knowledge about the model itself. Therefore, the
pose transformations correspond to operations in the image
space. This opens the question whether DeepIM can refine
the poses of objects that are not included in the training set.
From the experiment results we found that our network can
perform accurate refinement on these unseen models. See

123

International Journal of Computer Vision

Fig. 12 Failure cases in YCB-Video dataset. These images illustrate five different reasons we concluded that leads to fail cases

Fig. 13 Results on pose
refinement of 3D models from
the ModelNet dataset. These
instances were not seen in
training. The red and green lines
represent the edges of the initial
estimates and our refined poses
(Color figure online)

Fig. 13 for example results. We also tested our framework
on refining the poses of unseen object categories, where the
training categories and the test categories are completely dif-
ferent.

Test on Unseen Objects: In this experiment, we explore
the ability of the network in refining poses of objects that
has never been seen in training. ModelNet (Wu et al. 2015)
contains a large number of 3D models in different object
categories. Here, we tested our network on three of them:
airplane, car and chair. For each of these categories, we
train a network on no more than 200 3D models and test its
performance on 70 unseen 3D models from the same cate-
gory. Similar to the way that we generate synthetic data as
described in Sec 4.1, we generate 50 poses for each model as
the target poses and train the network for 4 epochs. We use
uniform gray texture for each model and add a light source
which has a fixed relative position to the object to reflect the
norms of the object. The initial pose used in training and
testing is generated in the same way as we did in previous
experiments as described in Sect. 4.1. The results are show
in Table 11.

Test on Unseen Categories: We also tested our framework
on refining the poses of unseen object categories, where the
training categories and the test categories are completely
different. We train the network on 8 categories from Mod-
elNet (Wu et al. 2015): airplane, bed, bench, car, chair,

Table 11 Results on unseen objects

Category Airplane Car Chair

Method Init. Refined Init. Refined Init. Refined

5 cm 5◦ 0.8 68.9 1.0 81.5 1.0 87.6

6D Pose 25.7 94.7 10.8 90.7 14.6 97.4

Proj. 2D 0.4 87.3 0.2 83.9 1.5 88.6

The bold numbers indicate highest number in this comparison
These models are not included in the training set

Table 12 Results on unseen categories

Metric (5◦, 5 cm) 6D Pose Projection 2D

Method Init. Refined Init. Refined Init. Refined

Bathtub 0.9 71.6 11.9 88.6 0.2 73.4

Bookshelf 1.2 39.2 9.2 76.4 0.1 51.3

Guitar 1.2 50.4 9.6 69.6 0.2 77.1

Range hood 1.0 69.8 11.2 89.6 0.0 70.6

Sofa 1.2 82.7 9.0 89.5 0.1 94.2

Wardrobe 1.4 62.7 12.5 79.4 0.2 70.0

TV stand 1.2 73.6 8.8 92.1 0.2 76.6

The bold numbers indicate highest number in this comparison
These categories has never been seen by the network during training

piano, sink, toilet with 30 models in each category and 50
image pairs for each model. The network was trained with
4 iterations and 4 epochs. Then we tested the network on 7
other categories: bathtub, bookshelf, guitar, range hood, sofa,
wardrobe, and tv stand. The results are shown in Table 12. It

123

International Journal of Computer Vision

shows that the network indeed has learned some general fea-
tures for pose refinement across different object categories.

5 Conclusion

In this work we introduce DeepIM, a novel framework for
iterative pose matching using color images only. Given an
initial 6D pose estimation of an object, we have designed
a new deep neural network to directly output a relative
pose transformation that improves the pose estimate. The
network automatically learns to match object poses during
training. We introduce an disentangled pose representation
that is also independent of the object size and the coordi-
nate frame of the 3D object model. In this way, the network
can even match poses of unseen objects, as shown in our
experiments. Our method significantly outperforms state-of-
the-art 6D pose estimation methods using color images only
and provides performance close to methods that use depth
images for pose refinement, such as using the iterative clos-
est point algorithm. Example visualizations of our results on
LINEMOD, ModelNet, T-LESS can be found here: https://
rse-lab.cs.washington.edu/projects/deepim.

This work opens up various directions for future research.
For instance,we expect that a stereo version ofDeepIMcould
further improve pose accuracy. Furthermore, DeepIM indi-
cates that it is possible to produce accurate 6D pose estimates
using color images only, enabling the use of cameras that cap-
ture high resolution images at high frame rates with a large
field of view, providing estimates useful for applications such
as robot manipulation.

Acknowledgements We thank Lirui Wang at University of Wash-
ington for his contribution in this project. This work was funded in
part by a Siemens Grant. We would also like to thank NVIDIA for
generously providing the DGX station used for this research via the
NVIDIA Robotics Lab and the UW NVIDIA AI Lab (NVAIL). This
work was also Supported by National Key R&D Program of China
2017YFB1002202, NSFC Projects 61620106005, 61325003, Beijing
Municipal Sci. & Tech. Commission Z181100008918014 and THU
Initiative Scientific Research Program.

References

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up
robust features (SURF). Computer Vision and Image Understand-
ing, 110(3), 346–359.

Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d
shapes. In P. J. Besl & N. D. McKay (Eds.), Sensor fusion IV:
Control paradigms and data structures (Vol. 1611, pp. 586–607).
Bellingham: International Society for Optics and Photonics.

Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., &
Rother, C. (2014). Learning 6D object pose estimation using 3D
object coordinates. In: European conference on computer vision
(ECCV).

Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold, S.,
& Rother, C. (2016). Uncertainty-driven 6D pose estimation of
objects and scenes from a single RGB image. In: IEEE conference
on computer vision and pattern recognition (CVPR) (pp. 3364–
3372).

Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., & Dollar,
A. M. (2015). The YCB object and model set: Towards common
benchmarks for manipulation research. In: 2015 International con-
ference on advanced robotics (ICAR), IEEE (pp. 510–517).

Carreira, J., Agrawal, P., Fragkiadaki, K., & Malik, J. (2016). Human
pose estimation with iterative error feedback. In: IEEE conference
on computer vision and pattern recognition (CVPR).

Collet, A., Martinez,M., & Srinivasa, S. S. (2011). TheMOPED frame-
work: Object recognition and pose estimation for manipulation.
International Journal of Robotics Research (IJRR), 30(10), 1284–
1306.

Costante, G.,&Ciarfuglia, T.A. (2018). LS-VO:Learning dense optical
subspace for robust visual odometry estimation. IEEE Robotics
and Automation Letters, 3(3), 1735–1742.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 1, 886–893.

Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., & Fox, D. (2019).
PoseRBPF: A Rao-blackwellized particle filter for 6D object pose
tracking. In Robotics: Science and systems (RSS).

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov,
V., van der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet:
Learning optical flowwith convolutional networks. In: IEEE inter-
national conference on computer vision (ICCV), pp 2758–2766.

Everingham,M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman,
A. (2010). The pascal visual object classes (VOC) challenge. IEEE
International Journal of Computer Vision (ICCV), 88(2), 303–338.

Garon, M., & Lalonde, J. F. (2017). Deep 6-DOF tracking. IEEE
Transactions on Visualization and Computer Graphics, 23(11),
2410–2418.

Garon, M., Boulet, P. O., Doironz, J. P., Beaulieu, L., & Lalonde, J.
F. (2016). Real-time high resolution 3D data on the hololens. In
IEEE international symposium on mixed and augmented reality
(ISMAR-Adjunct), IEEE (pp. 189–191).

Girshick, R. (2015). Fast R-CNN. In: IEEE international conference on
computer vision (ICCV) (pp. 1440–1448).

Gu, C., & Ren, X. (2010). Discriminative mixture-of-templates for
viewpoint classification. In European conference on computer
vision (ECCV) (pp. 408–421).

Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P.,
et al. (2012a). Gradient response maps for real-time detection of
textureless objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 34(5), 876–888.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige,
K., &Navab, N. (2012b).Model based training, detection and pose
estimation of texture-less 3D objects in heavily cluttered scenes.
In Asian conference on computer vision (ACCV).

Hinterstoisser, S., Lepetit, V., Rajkumar, N., & Konolige, K. (2016).
Going further with point pair features. In European conference on
computer vision (ECCV) (pp. 834–848).

Hodan, T., Haluza, P., Obdržálek, Š.,Matas, J., Lourakis,M., &Zabulis,
X. (2017). T-less: An RGB-D dataset for 6D pose estimation of
texture-less objects. In IEEE winter conference on applications of
computer vision (WACV), IEEE (pp. 880–888).

Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient
object recognition in cluttered 3D scenes. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 5, 433–449.

Jurie, F., & Dhome, M. (2001). Real time 3D template matching.
In IEEE conference on computer vision and pattern recognition
(CVPR) (Vol. 1, p. I).

123

https://rse-lab.cs.washington.edu/projects/deepim
https://rse-lab.cs.washington.edu/projects/deepim

International Journal of Computer Vision

Kehl, W., Manhardt, F., Tombari, F., Ilic, S., & Navab, N. (2017). SSD-
6D: Making RGB-based 3D detection and 6D pose estimation
great again. In IEEE conference on computer vision and pattern
recognition (CVPR) (pp. 1521–1529).

Kendall, A., & Cipolla, R. (2017). Geometric loss functions for cam-
era pose regression with deep learning. In IEEE conference on
computer vision and pattern recognition (CVPR).

Krull, A., Brachmann, E., Michel, F., Ying Yang, M., Gumhold, S.,
& Rother, C. (2015). Learning analysis-by-synthesis for 6D pose
estimation in RGB-D images. In IEEE international conference
on computer vision (ICCV) (pp. 954–962).

Lin, C. H., & Lucey, S. (2017). Inverse compositional spatial trans-
former networks. In IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 2568–2576).

Liu, M. Y., Tuzel, O., Veeraraghavan, A., & Chellappa, R. (2010). Fast
directional chamfer matching. In: IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 1696–1703).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., &
Berg, A. C. (2016). SSD: Single shot multibox detector. In Euro-
pean conference on computer vision (ECCV) (pp. 21–37).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In IEEE conference on computer
vision and pattern recognition (CVPR) (pp. 3431–3440).

Lowe, D. G. (1999). Object recognition from local scale-invariant fea-
tures. IEEE international conference on computer vision (ICCV)
(Vol. 2, pp. 1150–1157).

Manhardt, F., Kehl, W., Navab, N., & Tombari, F. (2018). Deep model-
based 6D pose refinement in RGB. In European conference on
computer vision (ECCV) (pp. 800–815).

Mellado, N., Aiger, D., & Mitra, N. J. (2014). Super 4pcs fast global
pointcloud registration via smart indexing. Computer Graphics
Forum, 33, 205–215.

Mian, A. S., Bennamoun, M., & Owens, R. (2006). Three-dimensional
model-based object recognition and segmentation in cluttered
scenes. IEEE Transactions on Pattern Analysis andMachine Intel-
ligence (TPAMI), 28(10), 1584–1601.

Michel, F., Kirillov, A., Brachmann, E., Krull, A., Gumhold, S.,
Savchynskyy, B., & Rother, C. (2017). Global hypothesis gen-
eration for 6D object pose estimation. In IEEE conference on
computer vision and pattern recognition (CVPR).

Mousavian, A., Anguelov, D., Flynn, J., & Košecká, J. (2017). 3D
bounding box estimation using deep learning and geometry. In
IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 5632–5640).

Nistér, D. (2005). Preemptive RANSAC for live structure and motion
estimation.Machine Vision and Applications, 16(5), 321–329.

Oberweger, M., Wohlhart, P., & Lepetit, V. (2015). Training a feedback
loop for hand pose estimation. In IEEE international conference
on computer vision (ICCV).

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learn-
ing on point sets for 3D classification and segmentation. IEEE
Computer Vision and Pattern Recognition (CVPR), 1(2), 4.

Rad, M., & Lepetit, V. (2017). BB8: A scalable, accurate, robust to
partial occlusionmethod for predicting the 3Dposes of challenging
objects without using depth. In IEEE international conference on
computer vision (ICCV).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only
look once: Unified, real-time object detection. In IEEE conference
on computer vision andpattern recognition (CVPR) (pp. 779–788).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN:
Towards real-time object detection with region proposal networks.
In Advances in neural information processing systems (NIPS).

Rothganger, F., Lazebnik, S., Schmid, C., & Ponce, J. (2006). 3D
object modeling and recognition using local affine-invariant image
descriptors and multi-view spatial constraints. International Jour-
nal of Computer Vision (IJCV), 66(3), 231–259.

Rusinkiewicz, S.,&Levoy,M. (2001). Efficient variants of the ICP algo-
rithm. In: Third international conference on 3-D digital imaging
and modeling, 2001. Proceedings. IEEE (pp. 145–152).

Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature
histograms (FPFH) for 3D registration. In IEEE international
conference on robotics and automation (ICRA), Citeseer (pp.
3212–3217).

Salvi, J., Matabosch, C., Fofi, D., & Forest, J. (2007). A review of recent
range image registration methods with accuracy evaluation. Image
and Vision Computing, 25(5), 578–596.

Saxena, A., Pandya, H., Kumar, G., Gaud, A., & Krishna, K. M. (2017).
Exploring convolutional networks for end-to-end visual servo-
ing. In IEEE international conference on robotics and automation
(ICRA) (pp. 3817–3823).

Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., & Fitzgibbon,
A. (2013). Scene coordinate regression forests for camera relocal-
ization in RGB-D images. In IEEE conference on computer vision
and pattern recognition (CVPR) (pp. 2930–2937).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

Sundermeyer, M., Marton, Z. C., Durner, M., Brucker, M., & Triebel,
R. (2018). Implicit 3D orientation learning for 6D object detection
from RGB images. In European conference on computer vision
(ECCV) (pp. 699–715).

Tam, G. K., Cheng, Z. Q., Lai, Y. K., Langbein, F. C., Liu, Y., Marshall,
D., et al. (2013). Registration of 3D point clouds and meshes: A
survey from rigid to nonrigid. IEEE Transactions on Visualization
and Computer Graphics, 19(7), 1199–1217.

Tekin, B., Sinha, S. N., & Fua, P. (2017). Real-time seamless single shot
6D object pose prediction. arXiv preprint arXiv:1711.08848.

Theiler, P.W.,Wegner, J.D.,&Schindler,K. (2015).Globally consistent
registration of terrestrial laser scans via graph optimization. ISPRS
Journal of Photogrammetry and Remote Sensing, 109, 126–138.

Tjaden, H., Schwanecke, U., & Schömer, E. (2017). Real-time monoc-
ular pose estimation of 3D objects using temporally consistent
local color histograms. In IEEE conference on computer vision
and pattern recognition (CVPR) (pp. 124–132).

Tombari, F., Salti, S., & Di Stefano, L. (2010). Unique signatures of
histograms for local surface description. In European conference
on computer vision (ECCV), Springer (pp. 356–369).

Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., & Birch-
field, S. (2018). Deep object pose estimation for semantic robotic
grasping of household objects. In Conference on robot learning
(pp. 306–316).

Wang, C., Xu, D., Zhu, Y., Martín-Martín, R., Lu, C., Fei-Fei, L., &
Savarese, S. (2019). Densefusion: 6D object pose estimation by
iterative dense fusion. arXiv preprint arXiv:1901.04780.

Wang, S., Clark, R., Wen, H., & Trigoni, N. (2017). Deepvo: Towards
end-to-end visual odometrywith deep recurrent convolutional neu-
ral networks. In IEEE international conference on robotics and
automation (ICRA), IEEE (pp. 2043–2050).

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J.
(2015). 3Dshapenets:Adeep representation for volumetric shapes.
In IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 1912–1920).

Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2018). PoseCNN:
A convolutional neural network for 6D object pose estimation in
cluttered scenes. In Robotics: Science and systems (RSS).

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.08848
http://arxiv.org/abs/1901.04780

International Journal of Computer Vision

Yang, J., Li, H., Campbell, D., & Jia, Y. (2016). GO-ICP: a globally
optimal solution to 3D ICP point-set registration. arXiv preprint
arXiv:1605.03344.

Zeng,A.,Yu,K.T., Song, S., Suo,D.,Walker, E.,Rodriguez,A.,&Xiao,
J. (2017). Multi-view self-supervised deep learning for 6D pose
estimation in theAmazon picking challenge. In IEEE international
conference on robotics and automation (ICRA) (pp. 1386–1383).

Zhou, Q. Y., Park, J., & Koltun, V. (2016). Fast global registration. In
European conference on computer vision (ECCV), Springer (pp.
766–782).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1605.03344

	DeepIM: Deep Iterative Matching for 6D Pose Estimation
	Abstract
	1 Introduction
	2 Related Work
	2.1 RGB Based 6D Pose Estimation
	2.2 Depth Based 6D Pose Estimation
	2.3 RGB-D Based 6D Pose Estimation
	2.4 RGB Versus RGB-D

	3 DeepIM Framework
	3.1 High-Resolution Zoom In
	3.2 Network Structure
	3.3 Disentangled Transformation Representation
	3.4 Matching Loss
	3.5 Training and Testing

	4 Experiments
	4.1 Training Implementation Details
	4.2 Testing Implementation Details
	4.3 Evaluation Metrics
	4.4 Experiments on the LINEMOD Dataset
	4.5 Experiments on the Occlusion LINEMOD Dataset
	4.6 Experiments on the YCB-Video Dataset
	4.7 Application to Unseen Objects and Unseen Categories

	5 Conclusion
	Acknowledgements
	References

